Al-Farabi Kazakh National University Faculty of chemistry and chemical technology Department of physical chemistry, catalysis and petrochemistry

Program of the final exam on discipline
91725 Quantum-chemical methods in thermochemistry
6B05301-Chemistry (NIS)

The program of the final exam is composed by the lecturer of the
Department of Physical Chemistry, Catalysis and Petrochemistry, PhD
Supiyeva Zh.A.
Reviewed and recommended at the meeting of the department of physical chemistry, catalysis and petrochemistry
«» 2023, Protocol №

Head of department _____ Ye.A.Aubakirov

Topics for which assignments will be compiled

- 1. Description of modern quantum chemistry.
- 2. The atom in computational methods. One electron atom. A multi-electron atom.
 - 3. Semi-empirical methods of electronic structure calculation.
 - 4. Basic functions of Slater and Gaussian types.
- 5. Approximate methods for solving the Schrödinger equation for multielectron systems.
- 6. A molecule in computational methods. Born-Oppenheimer approximation.
- 7. Approximation of the linear combination of MO atomic orbitals. Rutan equations.
 - 8. Hartree-Fock method.
 - 9. Basis sets and pseudopotentials.
 - 10. Electronic characteristics.
- 11. Methods of accounting for electronic correlation. Methods of function theory.
- 12. Geitler-London, Pauling-Slater method of valence bonds, concepts of hybridization and resonance from the perspective of quantum mechanics.
- 13. Geitler-London, Pauling-Slater method of valence bonds, concepts of hybridization and resonance from the perspective of quantum mechanics. Homonuclear diatomic molecules, calculation of their MO energy using the variational principle.
- 14. Designing a task for calculating simple molecules. The problem of choosing the basis of AO. Geometric optimization. Analysis of AO complementation and communication order according to Mulliken.
- 15. Molecular quantum numbers. MO method-basic rules and tasks. One electron approximation, concept of molecular orbital. Linear combination approximation of MO atomic orbital in the Hartree-Fock method, Rutan equations and their solution methodology.